粉体圈首页     您好,欢迎来到极速5分快三!
个人注册   企业注册   登录   找回密码   进入供求市场
粉体圈专注为粉碎设备,粉体设备等厂家提供粉体技术,粉体会议等信息及粉体展示和交流平台。 粉体圈专注为粉碎设备,粉体设备等厂家提供粉体技术,粉体会议等信息及粉体展示和交流平台。
当前位置:粉体圈首页>粉体技术>粉体加工技术>正文
一文了解碳纤维表面改性技术
2018年11月14日 发布 分类:粉体加工技术 点击量:3149
0

碳纤维以其优异的比强度、比模量、耐腐蚀、吸能等性能,在航空航天、国防军工、轨道交通、汽车等领域得到广泛应用,碳纤维增强复合材料的力学性能与碳表面形貌结构及化学组成直接相关。通过对碳纤维表面进行改性,改变碳纤维表面活性及形貌,改善其浸润性,提高界面结合作用,能够充分发挥碳纤维高强度、高模量等优异性能。

 

1  聚丙烯腈基碳纤维

 

碳纤维表面改性主要分为“表面化学改性”、“表面形貌改变”和“表面进行重建。” 表面化学改性是指:向表面引入官能基团或分子链,可提高表面活性和表面自由能。改变表面形貌是指:适度增加表面粗糙度,增加比表面积,可提高与树脂浸润的接触面积,同时可在碳纤维/树脂间形成机械锁链作用。表面进行重建是指:将微纳米颗粒吸附或生长在碳纤维表面,对表面进行重建,得到全新的碳纤维表面三维结构,可提高碳纤维/树脂界面粘合性,同时避免对碳纤维本体的损伤。下文将对不同的改性方法做解析。

 

一、碳纤维表面化学改性

1、表面引入官能基团

碳纤维含碳量超过95%,表面呈现化学惰性,不利于与基体材料的化学键连接。对碳纤维表面进行含氧、氮等基团改性,可提高碳纤维表面活性、提升碳纤维复合材料层间剪切强度等力学性能。

 

研究者采用连续气相热化学法处理碳纤维,实现碳纤维表面羟基和羧基含量发生变化,氧含量达14%-24%。碳纤维表面初始氧基团含量与碳纤维微观晶粒大小相关,而结晶与原丝等级和表面微观结构有关,通过热化学处理法可更好地调控碳纤维表面氧含量,从而使碳纤维表面化学组成具有可设计性。

 

2、碳纤维表面接枝分子链

在碳纤维表面基团改性基础上,通过接枝等化学反应可将设定结构分子链引入碳纤维表面,改善碳纤维与树脂基体间的界面粘结性,从而提高复合材料的性能。

中科院宁波材料所采用石墨烯纳米粒子接枝到碳纤维表面,可以有效提高碳纤维复合材料的界面性能。为了实现石墨烯改性碳纤维的规模化路线,采用石墨烯改性上浆剂对碳纤维表面进行改性,以提高碳纤维复合材料的界面性能。

 

 

 

二、碳纤维表面形貌改变

改变碳纤维表面粗糙度及微观结构,使表面形成凹凸、孔洞等结构,与树脂基体产生机械锁链,从而改善界面粘合作用,提高碳纤维复合材料力学性能。

研究者采用连续气相热化学法处理碳纤维,处理后纤维表面出现10nm以下的凹凸结构,这些结构可与基体材料形成机械锁链,进一步提高碳纤维复合材料力学性能。

福州大学研究者采用浓H2SO4/浓HNO3混合酸对碳纤维进行表面氧化处理得到氧化碳纤维,再利用γ-甲基丙烯酰氧丙基三甲氧基硅烷(KH-570)与氧化碳纤维进一步反应得到KH-570接枝改性碳纤维,碳纤维在氧化反应后表面沟槽加深加宽,粗糙度显著提升,接枝KH-570后碳纤维表面粗糙度进一步提升; 氧化反应、接枝KH-570能够有效改善碳纤维与乙烯-醋酸乙烯共聚物基体之间的相容性,其中接枝KH-570对碳纤维与乙烯-醋酸乙烯共聚物基体之间相容性的改善更为显著。

 

2  改性后碳纤维SEM(来自福州大学)

 

三、碳纤维表面微纳米颗粒3D结构重建与改性

采用化学生长或键合吸附等方式在碳纤维表面构建有机、无机、有机G无机复合微纳米颗粒、线等结构,在不改变碳纤维本体性质的同时,可有效提高碳纤维的活性和比表面积,提高纤维与树脂的相容性,即实现碳纤维无损表面改性。

 

1)碳纤维表面构建有机颗粒

碳纤维表面构建有机颗粒工艺过程是首先采用无皂乳液聚合制备表面带正电荷的聚甲基丙烯酸甲酯(PMMA)微球,然后将碳纤维浸渍在PMMA微球悬浮液中,采用电泳方法,将直径为160nm的PMMA微球吸附在碳纤维表面,吸附时间仅为30s,调节电压,可在短时间内改变微球吸附量。在碳纤维表面构建不同的3D结构,可实现碳纤维表面的可控改性,以此调控纤维与基体树脂间的界面剪切强度。

 

2)碳纤维表面构建无机颗粒

研究者采用两步法(首先将碳纤维浸入锌化物溶液中采用浸渍涂覆法形成种子层,并加热提高附着力;接着再浸入锌化物溶液中采用水热法进行ZnO 生长)在碳纤维表面生长 ZnO 纳米线,调节纳米线生长条件,可改变碳纤维比表面积。提高纳米线覆盖率,碳纤维表面由亲水变为疏水,阻碍树脂渗透、润湿纤维,液态树脂在碳纤维增强体中流动速度提高。

 

中科院宁波材料所将氧化石墨烯引入环氧基上浆乳液中,采用浸渍法对碳纤维进行表面改性,可以有效调控碳纤维复合材料的界面微观结构,进而显著改善碳纤维复合材料的界面性能。

 

3)碳纤维表面构建有机-无机复合颗粒

碳纤维表面形成金属-有机骨架结构是一种有效的表面结构重建改性方法。在硝酸氧化处理碳纤维表面原位生长出纳米多孔金属-有机骨架结构,形成了一种新的纤维与树脂基体界面,可巧妙缓冲内/外作用力,使复合材料层间剪切强度及拉伸强度同时增加。

 

参考文献:

1、郑玉婴,功能化氧化石墨烯纳米带/EVA复合材料薄膜的制备及表征,材料工程。

2、刘杰,白艳霞,田宇黎等,电化学表面处理碳纤维结构及性能的影响,复合材料学报。

 

作者:乐心


相关内容:
0
 

点击加入粉体技术交流群粉体技术群
返回页顶